Funciones de una variable compleja y teoría de las funciones analíticas

30/05/2011 5.813 Palabras

Funciones de Variable Compleja Introducción • Cuando se inició el interés por la noción de función, es decir, a finales del siglo XVII y principios del XVIII, los matemáticos tuvieron la «curiosidad» de examinar qué sucedía cuando la variable real x era reemplazada por una variable imaginaria z (todavía no se decía «compleja»). Así, desde 1702, Leibniz y Jean Bernouilli no dudan en hablar del logaritmo de un número imaginario, es decir, de la función log z para z compleja. A decir verdad, como buenos matemáticos, al principio desconfiaron de su intuición y discutieron largamente sobre la validez de esta generalización. ¿Cómo, por ejemplo, definir el logaritmo de i2, cualquiera que sea la base escogida? En efecto, i2= – l, y la función logarítmica sólo se define para una variable positiva: pero ¿qué es un número complejo «positivo»? La discusión duró cincuenta años: entre Leibniz y Bernouilli hasta 1726, entre Euler y D’Alembert hasta 1747. Hacia 1750, Euler clarificó la cuestión y demostró que todo número, real o imaginario, poseía una infinidad de logaritmos, todos imaginarios excepto uno (cuando el número es positivo).

This website uses its own and third-party cookies in order to obtain statistical information based on the navigation data of our visitors. If you continue browsing, the acceptance of its use will be assumed, and in case of not accepting its installation you should visit the information section, where we explain how to remove or deny them.
OK | More info